
Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Chapter 7: Synchronization

Examples

7.2 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Chapter 7: Synchronization Examples

Classic Problems of Synchronization

Synchronization within the Kernel

POSIX Synchronization

Synchronization in Java

Alternative Approaches

7.3 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Classical Problems of Synchronization

Classical problems used to test newly-proposed synchronization

schemes

Bounded-Buffer Problem

Readers and Writers Problem

Dining-Philosophers Problem

7.4 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Bounded-Buffer Problem

n buffers, each can hold one item

Semaphore mutex initialized to the value 1

Semaphore full initialized to the value 0

Semaphore empty initialized to the value n

7.5 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Bounded Buffer Problem (Cont.)

The structure of the producer process

do {

...

/* produce an item in next_produced */

...

wait(empty);

wait(mutex);

...

/* add next produced to the buffer */

...

signal(mutex);

signal(full);

} while (true);

7.6 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Bounded Buffer Problem (Cont.)

The structure of the consumer process

Do {

wait(full);

wait(mutex);

...

/* remove an item from buffer to next_consumed */

...

signal(mutex);

signal(empty);

...

/* consume the item in next consumed */

...

} while (true);

7.7 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Readers-Writers Problem

A data set is shared among a number of concurrent processes

Readers – only read the data set; they do not perform any updates

Writers – can both read and write

Problem – allow multiple readers to read at the same time

Only one single writer can access the shared data at the same time

Several variations of how readers and writers are considered – all

involve some form of priorities

Shared Data

Data set

Semaphore rw_mutex initialized to 1

Semaphore mutex initialized to 1

Integer read_count initialized to 0

7.8 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Readers-Writers Problem (Cont.)

The structure of a writer process

do {

wait(rw_mutex);

...

/* writing is performed */

...

signal(rw_mutex);

} while (true);

7.9 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Readers-Writers Problem (Cont.)

The structure of a reader process

do {

wait(mutex);

read_count++;

if (read_count == 1)

wait(rw_mutex);

signal(mutex);

...

/* reading is performed */

...

wait(mutex);

read count--;

if (read_count == 0)

signal(rw_mutex);

signal(mutex);

} while (true);

7.10 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Readers-Writers Problem Variations

First variation – no reader kept waiting unless writer has

permission to use shared object

Second variation – once writer is ready, it performs the

write ASAP

Both may have starvation leading to even more variations

Problem is solved on some systems by kernel providing

reader-writer locks

7.11 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Dining-Philosophers Problem

Philosophers spend their lives alternating thinking and eating

Don’t interact with their neighbors, occasionally try to pick up 2

chopsticks (one at a time) to eat from bowl

Need both to eat, then release both when done

In the case of 5 philosophers

Shared data

 Bowl of rice (data set)

 Semaphore chopstick [5] initialized to 1

7.12 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Dining-Philosophers Problem Algorithm

The structure of Philosopher i:

do {

wait (chopstick[i]);

wait (chopStick[(i + 1) % 5]);

// eat

signal (chopstick[i]);

signal (chopstick[(i + 1) % 5]);

// think

} while (TRUE);

What is the problem with this algorithm?

7.13 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Monitor Solution to Dining Philosophers

monitor DiningPhilosophers

{

enum { THINKING; HUNGRY, EATING) state [5] ;

condition self [5];

void pickup (int i) {

state[i] = HUNGRY;

test(i);

if (state[i] != EATING) self[i].wait;

}

void putdown (int i) {

state[i] = THINKING;

// test left and right neighbors

test((i + 4) % 5);

test((i + 1) % 5);

}

7.14 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Solution to Dining Philosophers (Cont.)

void test (int i) {

if ((state[(i + 4) % 5] != EATING) &&

(state[i] == HUNGRY) &&

(state[(i + 1) % 5] != EATING)) {

state[i] = EATING ;

self[i].signal () ;

}

}

initialization_code() {

for (int i = 0; i < 5; i++)

state[i] = THINKING;

}

}

7.15 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Each philosopher i invokes the operations pickup() and
putdown() in the following sequence:

DiningPhilosophers.pickup(i);

EAT

DiningPhilosophers.putdown(i);

No deadlock, but starvation is possible

Solution to Dining Philosophers (Cont.)

7.16 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

A Monitor to Allocate Single Resource

monitor ResourceAllocator

{

boolean busy;

condition x;

void acquire(int time) {

if (busy)

x.wait(time);

busy = TRUE;

}

void release() {

busy = FALSE;

x.signal();

}

initialization code() {

busy = FALSE;

}

}

7.17 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Synchronization Examples

Solaris

Windows

Linux

Pthreads

7.18 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Solaris Synchronization

Implements a variety of locks to support multitasking, multithreading

(including real-time threads), and multiprocessing

Uses adaptive mutexes for efficiency when protecting data from short

code segments

Starts as a standard semaphore spin-lock

If lock held, and by a thread running on another CPU, spins

If lock held by non-run-state thread, block and sleep waiting for signal of

lock being released

Uses condition variables

Uses readers-writers locks when longer sections of code need

access to data

Uses turnstiles to order the list of threads waiting to acquire either an

adaptive mutex or reader-writer lock

Turnstiles are per-lock-holding-thread, not per-object

Priority-inheritance per-turnstile gives the running thread the highest of

the priorities of the threads in its turnstile

7.19 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Windows Synchronization

Uses interrupt masks to protect access to global resources on

uniprocessor systems

Uses spinlocks on multiprocessor systems

Spinlocking-thread will never be preempted

Also provides dispatcher objects user-land which may act

mutexes, semaphores, events, and timers

Events

 An event acts much like a condition variable

Timers notify one or more thread when time expired

Dispatcher objects either signaled-state (object available)

or non-signaled state (thread will block)

7.20 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Linux Synchronization

Linux:

Prior to kernel Version 2.6, disables interrupts to

implement short critical sections

Version 2.6 and later, fully preemptive

Linux provides:

Semaphores

atomic integers

spinlocks

reader-writer versions of both

On single-cpu system, spinlocks replaced by enabling and

disabling kernel preemption

7.21 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Pthreads Synchronization

Pthreads API is OS-independent

It provides:

mutex locks

condition variable

Non-portable extensions include:

read-write locks

spinlocks

7.22 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Alternative Approaches

Transactional Memory

OpenMP

Functional Programming Languages

7.23 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

A memory transaction is a sequence of read-write operations
to memory that are performed atomically.

void update()

{

/* read/write memory */

}

Transactional Memory

7.24 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

OpenMP is a set of compiler directives and API that support
parallel progamming.

void update(int value)

{

#pragma omp critical

{

count += value

}

}

The code contained within the #pragma omp critical directive
is treated as a critical section and performed atomically.

OpenMP

7.25 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Functional programming languages offer a different paradigm
than procedural languages in that they do not maintain state.

Variables are treated as immutable and cannot change state
once they have been assigned a value.

There is increasing interest in functional languages such as
Erlang and Scala for their approach in handling data races.

Functional Programming Languages

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

End of Chapter 7

