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Classical Problems of Synchronization

Classical problems used to test newly-proposed synchronization 

schemes

Bounded-Buffer Problem

Readers and Writers Problem

Dining-Philosophers Problem
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Bounded-Buffer Problem

n buffers, each can hold one item

Semaphore mutex initialized to the value 1

Semaphore full initialized to the value 0

Semaphore empty initialized to the value n
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Bounded Buffer Problem (Cont.)

The structure of the producer process

do { 

...

/* produce an item in next_produced */ 

... 

wait(empty); 

wait(mutex); 

...

/* add next produced to the buffer */ 

... 

signal(mutex); 

signal(full); 

} while (true);
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Bounded Buffer Problem (Cont.)

The structure of the consumer process

Do { 

wait(full); 

wait(mutex); 

...

/* remove an item from buffer to next_consumed */ 

... 

signal(mutex); 

signal(empty); 

...

/* consume the item in next consumed */ 

...

} while (true); 
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Readers-Writers Problem

A data set is shared among a number of concurrent processes

Readers – only read the data set; they do not perform any updates

Writers   – can both read and write

Problem – allow multiple readers to read at the same time

Only one single writer can access the shared data at the same time

Several variations of how readers and writers are considered  – all 

involve some form of priorities

Shared Data

Data set

Semaphore rw_mutex initialized to 1

Semaphore mutex initialized to 1

Integer read_count initialized to 0
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Readers-Writers Problem (Cont.)

The structure of a writer process

do {

wait(rw_mutex); 

...

/* writing is performed */ 

... 

signal(rw_mutex); 

} while (true);
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Readers-Writers Problem (Cont.)

The structure of a reader process

do {

wait(mutex);

read_count++;

if (read_count == 1) 

wait(rw_mutex); 

signal(mutex); 

...

/* reading is performed */ 

... 

wait(mutex);

read count--;

if (read_count == 0) 

signal(rw_mutex); 

signal(mutex); 

} while (true);
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Readers-Writers Problem Variations

First variation – no reader kept waiting unless writer has 

permission to use shared object

Second variation – once writer is ready, it performs the 

write ASAP

Both may have starvation leading to even more variations

Problem is solved on some systems by kernel providing 

reader-writer locks
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Dining-Philosophers Problem

Philosophers spend their lives alternating thinking and eating

Don’t interact with their neighbors, occasionally try to pick up 2 

chopsticks (one at a time) to eat from bowl

Need both to eat, then release both when done

In the case of 5 philosophers

Shared data 

 Bowl of rice (data set)

 Semaphore chopstick [5] initialized to 1
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Dining-Philosophers Problem Algorithm

The structure of Philosopher i:

do { 

wait (chopstick[i] );

wait (chopStick[ (i + 1) % 5] );

//  eat

signal (chopstick[i] );

signal (chopstick[ (i + 1) % 5] );

//  think

} while (TRUE);

What is the problem with this algorithm?
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Monitor Solution to Dining Philosophers

monitor DiningPhilosophers

{ 

enum { THINKING; HUNGRY, EATING) state [5] ;

condition self [5];

void pickup (int i) { 

state[i] = HUNGRY;

test(i);

if (state[i] != EATING) self[i].wait;

}

void putdown (int i) { 

state[i] = THINKING;

// test left and right neighbors

test((i + 4) % 5);

test((i + 1) % 5);

}
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Solution to Dining Philosophers (Cont.)

void test (int i) { 

if ((state[(i + 4) % 5] != EATING) &&

(state[i] == HUNGRY) &&

(state[(i + 1) % 5] != EATING) ) { 

state[i] = EATING ;

self[i].signal () ;

}

}

initialization_code() { 

for (int i = 0; i < 5; i++)

state[i] = THINKING;

}

}
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Each philosopher i invokes the operations pickup() and 
putdown() in the following sequence:

DiningPhilosophers.pickup(i);

EAT

DiningPhilosophers.putdown(i);

No deadlock, but starvation is possible

Solution to Dining Philosophers (Cont.)
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A Monitor to Allocate Single Resource

monitor ResourceAllocator 

{ 

boolean busy; 

condition x; 

void acquire(int time) { 

if (busy) 

x.wait(time); 

busy = TRUE; 

} 

void release() { 

busy = FALSE; 

x.signal(); 

} 

initialization code() {

busy = FALSE; 

}

}
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Synchronization Examples

Solaris

Windows

Linux

Pthreads
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Solaris Synchronization

Implements a variety of locks to support multitasking, multithreading 

(including real-time threads), and multiprocessing

Uses adaptive mutexes for efficiency when protecting data from short 

code segments

Starts as a standard semaphore spin-lock

If lock held, and by a thread running on another CPU, spins

If lock held by non-run-state thread, block and sleep waiting for signal of 

lock being released

Uses condition variables

Uses readers-writers locks when longer sections of code need 

access to data

Uses turnstiles to order the list of threads waiting to acquire either an 

adaptive mutex or reader-writer lock

Turnstiles are per-lock-holding-thread, not per-object

Priority-inheritance per-turnstile gives the running thread the highest of 

the priorities of the threads in its turnstile
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Windows Synchronization

Uses interrupt masks to protect access to global resources on 

uniprocessor systems

Uses spinlocks on multiprocessor systems

Spinlocking-thread will never be preempted

Also provides dispatcher objects user-land which may act 

mutexes, semaphores, events, and timers

Events

 An event acts much like a condition variable

Timers notify one or more thread when time expired

Dispatcher objects either signaled-state (object available) 

or non-signaled state (thread will block)
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Linux Synchronization

Linux:

Prior to kernel Version 2.6, disables interrupts to 

implement short critical sections

Version 2.6 and later, fully preemptive

Linux provides:

Semaphores

atomic integers

spinlocks

reader-writer versions of both

On single-cpu system, spinlocks replaced by enabling and 

disabling kernel preemption
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Pthreads Synchronization

Pthreads API is OS-independent

It provides:

mutex locks

condition variable

Non-portable extensions include:

read-write locks

spinlocks
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Alternative Approaches

Transactional Memory

OpenMP

Functional Programming Languages
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A memory transaction is a sequence of read-write operations 
to memory that are performed atomically.

void update()

{

/* read/write memory */

}

Transactional Memory
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OpenMP is a set of compiler directives and API that support 
parallel progamming.

void update(int value)

{

#pragma omp critical

{

count += value

}

}

The code contained within the #pragma omp critical directive 
is treated as a critical section and performed atomically.

OpenMP
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Functional programming languages offer a different paradigm 
than procedural languages in that they do not maintain state. 

Variables are treated as immutable and cannot change state 
once they have been assigned a value.

There is increasing interest in functional languages such as 
Erlang and Scala for their approach in handling data races.

Functional Programming Languages
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End of Chapter 7


