
Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Chapter 15: File System

Internals

15.2 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Chapter 15: File System Internals

File Systems

File-System Mounting

Partitions and Mounting

File Sharing

Virtual File Systems

Remote File Systems

Consistency Semantics

NFS

15.3 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Objectives

a

15.4 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

File System

a

b

15.5 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Partitions and Mounting

Partition can be a volume containing a file system (“cooked”) or

raw – just a sequence of blocks with no file system

Boot block can point to boot volume or boot loader set of blocks that

contain enough code to know how to load the kernel from the file

system

Or a boot management program for multi-os booting

Root partition contains the OS, other partitions can hold other

Oses, other file systems, or be raw

Mounted at boot time

Other partitions can mount automatically or manually

At mount time, file system consistency checked

Is all metadata correct?

 If not, fix it, try again

 If yes, add to mount table, allow access

15.6 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

File Sharing

a

b

15.7 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Virtual File Systems

Virtual File Systems (VFS) on Unix provide an object-oriented

way of implementing file systems

VFS allows the same system call interface (the API) to be used

for different types of file systems

Separates file-system generic operations from

implementation details

Implementation can be one of many file systems types, or

network file system

 Implements vnodes which hold inodes or network file

details

Then dispatches operation to appropriate file system

implementation routines

15.8 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Virtual File Systems (Cont.)

The API is to the VFS interface, rather than any specific type of

file system

15.9 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Virtual File System Implementation

For example, Linux has four object types:

inode, file, superblock, dentry

VFS defines set of operations on the objects that must be

implemented

Every object has a pointer to a function table

 Function table has addresses of routines to implement that

function on that object

 For example:

 • int open(. . .)—Open a file

 • int close(. . .)—Close an already-open file

 • ssize t read(. . .)—Read from a file

 • ssize t write(. . .)—Write to a file

 • int mmap(. . .)—Memory-map a file

15.10 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

The Sun Network File System (NFS)

An implementation and a specification of a software system

for accessing remote files across LANs (or WANs)

The implementation is part of the Solaris and SunOS

operating systems running on Sun workstations using an

unreliable datagram protocol (UDP/IP protocol and Ethernet

15.11 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

NFS (Cont.)

Interconnected workstations viewed as a set of independent machines
with independent file systems, which allows sharing among these file
systems in a transparent manner

A remote directory is mounted over a local file system directory

 The mounted directory looks like an integral subtree of the local
file system, replacing the subtree descending from the local
directory

Specification of the remote directory for the mount operation is
nontransparent; the host name of the remote directory has to be
provided

 Files in the remote directory can then be accessed in a
transparent manner

Subject to access-rights accreditation, potentially any file system
(or directory within a file system), can be mounted remotely on top
of any local directory

15.12 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

NFS (Cont.)

NFS is designed to operate in a heterogeneous environment of

different machines, operating systems, and network architectures;

the NFS specifications independent of these media

This independence is achieved through the use of RPC primitives

built on top of an External Data Representation (XDR) protocol

used between two implementation-independent interfaces

The NFS specification distinguishes between the services provided

by a mount mechanism and the actual remote-file-access services

15.13 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Three Independent File Systems

15.14 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Mounting in NFS

Mounts Cascading mounts

15.15 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

NFS Mount Protocol

Establishes initial logical connection between server and client

Mount operation includes name of remote directory to be mounted

and name of server machine storing it

Mount request is mapped to corresponding RPC and forwarded

to mount server running on server machine

Export list – specifies local file systems that server exports for

mounting, along with names of machines that are permitted to

mount them

Following a mount request that conforms to its export list, the

server returns a file handle—a key for further accesses

File handle – a file-system identifier, and an inode number to

identify the mounted directory within the exported file system

The mount operation changes only the user’s view and does not

affect the server side

15.16 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

NFS Protocol

Provides a set of remote procedure calls for remote file operations.
The procedures support the following operations:

searching for a file within a directory

reading a set of directory entries

manipulating links and directories

accessing file attributes

reading and writing files

NFS servers are stateless; each request has to provide a full set
of arguments (NFS V4 is just coming available – very different,
stateful)

Modified data must be committed to the server’s disk before
results are returned to the client (lose advantages of caching)

The NFS protocol does not provide concurrency-control
mechanisms

15.17 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Three Major Layers of NFS Architecture

UNIX file-system interface (based on the open, read, write, and

close calls, and file descriptors)

Virtual File System (VFS) layer – distinguishes local files from

remote ones, and local files are further distinguished according to

their file-system types

The VFS activates file-system-specific operations to handle

local requests according to their file-system types

Calls the NFS protocol procedures for remote requests

NFS service layer – bottom layer of the architecture

Implements the NFS protocol

15.18 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Schematic View of NFS Architecture

15.19 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

NFS Path-Name Translation

Performed by breaking the path into component names and

performing a separate NFS lookup call for every pair of

component name and directory vnode

To make lookup faster, a directory name lookup cache on the

client’s side holds the vnodes for remote directory names

15.20 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

NFS Remote Operations

Nearly one-to-one correspondence between regular UNIX system

calls and the NFS protocol RPCs (except opening and closing

files)

NFS adheres to the remote-service paradigm, but employs

buffering and caching techniques for the sake of performance

File-blocks cache – when a file is opened, the kernel checks with

the remote server whether to fetch or revalidate the cached

attributes

Cached file blocks are used only if the corresponding cached

attributes are up to date

File-attribute cache – the attribute cache is updated whenever new

attributes arrive from the server

Clients do not free delayed-write blocks until the server confirms

that the data have been written to disk

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

End of Chapter 15

