
Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Chapter 12: I/O Systems

12.2 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Chapter 12: I/O Systems

Overview

I/O Hardware

Application I/O Interface

Kernel I/O Subsystem

Transforming I/O Requests to Hardware Operations

STREAMS

Performance

12.3 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Objectives

Explore the structure of an operating system’s I/O subsystem

Discuss the principles of I/O hardware and its complexity

Provide details of the performance aspects of I/O hardware

and software

12.4 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Overview

I/O management is a major component of operating system

design and operation

Important aspect of computer operation

I/O devices vary greatly

Various methods to control them

Performance management

New types of devices frequent

Ports, busses, device controllers connect to various devices

Device drivers encapsulate device details

Present uniform device-access interface to I/O subsystem

12.5 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

I/O Hardware

Incredible variety of I/O devices

Storage

Transmission

Human-interface

Common concepts – signals from I/O devices interface with computer

Port – connection point for device

Bus - daisy chain or shared direct access

 PCI bus common in PCs and servers, PCI Express (PCIe)

 expansion bus connects relatively slow devices

Controller (host adapter) – electronics that operate port, bus, device

 Sometimes integrated

 Sometimes separate circuit board (host adapter)

 Contains processor, microcode, private memory, bus controller, etc

– Some talk to per-device controller with bus controller, microcode,

memory, etc

12.6 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

A Typical PC Bus Structure

12.7 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

I/O Hardware (Cont.)

I/O instructions control devices

Devices usually have registers where device driver places

commands, addresses, and data to write, or read data from

registers after command execution

Data-in register, data-out register, status register, control

register

Typically 1-4 bytes, or FIFO buffer

Devices have addresses, used by

Direct I/O instructions

Memory-mapped I/O

 Device data and command registers mapped to

processor address space

 Especially for large address spaces (graphics)

12.8 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Device I/O Port Locations on PCs (partial)

12.9 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Polling

For each byte of I/O

1. Read busy bit from status register until 0

2. Host sets read or write bit and if write copies data into data-out

register

3. Host sets command-ready bit

4. Controller sets busy bit, executes transfer

5. Controller clears busy bit, error bit, command-ready bit when

transfer done

Step 1 is busy-wait cycle to wait for I/O from device

Reasonable if device is fast

But inefficient if device slow

CPU switches to other tasks?

 But if miss a cycle data overwritten / lost

12.10 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Interrupts

Polling can happen in 3 instruction cycles

Read status, logical-and to extract status bit, branch if not zero

How to be more efficient if non-zero infrequently?

CPU Interrupt-request line triggered by I/O device

Checked by processor after each instruction

Interrupt handler receives interrupts

Maskable to ignore or delay some interrupts

Interrupt vector to dispatch interrupt to correct handler

Context switch at start and end

Based on priority

Some nonmaskable

Interrupt chaining if more than one device at same interrupt

number

12.11 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Interrupt-Driven I/O Cycle

12.12 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Intel Pentium Processor Event-Vector Table

12.13 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Interrupts (Cont.)

Interrupt mechanism also used for exceptions

Terminate process, crash system due to hardware error

Page fault executes when memory access error

System call executes via trap to trigger kernel to execute

request

Multi-CPU systems can process interrupts concurrently

If operating system designed to handle it

Used for time-sensitive processing, frequent, must be fast

12.14 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Direct Memory Access

Used to avoid programmed I/O (one byte at a time) for large data

movement

Requires DMA controller

Bypasses CPU to transfer data directly between I/O device and

memory

OS writes DMA command block into memory

Source and destination addresses

Read or write mode

Count of bytes

Writes location of command block to DMA controller

Bus mastering of DMA controller – grabs bus from CPU

 Cycle stealing from CPU but still much more efficient

When done, interrupts to signal completion

Version that is aware of virtual addresses can be even more efficient -

DVMA

12.15 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Six Step Process to Perform DMA Transfer

12.16 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Application I/O Interface

I/O system calls encapsulate device behaviors in generic classes

Device-driver layer hides differences among I/O controllers from kernel

New devices talking already-implemented protocols need no extra

work

Each OS has its own I/O subsystem structures and device driver

frameworks

Devices vary in many dimensions

Character-stream or block

Sequential or random-access

Synchronous or asynchronous (or both)

Sharable or dedicated

Speed of operation

read-write, read only, or write only

12.17 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

A Kernel I/O Structure

12.18 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Characteristics of I/O Devices

12.19 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Characteristics of I/O Devices (Cont.)

Subtleties of devices handled by device drivers

Broadly I/O devices can be grouped by the OS into

Block I/O

Character I/O (Stream)

Memory-mapped file access

Network sockets

For direct manipulation of I/O device specific characteristics,

usually an escape / back door

Unix ioctl() call to send arbitrary bits to a device control

register and data to device data register

12.20 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Block and Character Devices

Block devices include disk drives

Commands include read, write, seek

Raw I/O, direct I/O, or file-system access

Memory-mapped file access possible

 File mapped to virtual memory and clusters brought via

demand paging

DMA

Character devices include keyboards, mice, serial ports

Commands include get(), put()

Libraries layered on top allow line editing

12.21 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Network Devices

Varying enough from block and character to have own

interface

Linux, Unix, Windows and many others include socket

interface

Separates network protocol from network operation

Includes select() functionality

Approaches vary widely (pipes, FIFOs, streams, queues,

mailboxes)

12.22 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Clocks and Timers

Provide current time, elapsed time, timer

Normal resolution about 1/60 second

Some systems provide higher-resolution timers

Programmable interval timer used for timings, periodic

interrupts

ioctl() (on UNIX) covers odd aspects of I/O such as

clocks and timers

12.23 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Nonblocking and Asynchronous I/O

Blocking - process suspended until I/O completed

Easy to use and understand

Insufficient for some needs

Nonblocking - I/O call returns as much as available

User interface, data copy (buffered I/O)

Implemented via multi-threading

Returns quickly with count of bytes read or written

select() to find if data ready then read() or write()

to transfer

Asynchronous - process runs while I/O executes

Difficult to use

I/O subsystem signals process when I/O completed

12.24 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Two I/O Methods

Synchronous Asynchronous

12.25 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Vectored I/O

Vectored I/O allows one system call to perform multiple I/O

operations

For example, Unix readve() accepts a vector of multiple

buffers to read into or write from

This scatter-gather method better than multiple individual I/O

calls

Decreases context switching and system call overhead

Some versions provide atomicity

 Avoid for example worry about multiple threads

changing data as reads / writes occurring

12.26 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Kernel I/O Subsystem

Scheduling

Some I/O request ordering via per-device queue

Some OSs try fairness

Some implement Quality Of Service (i.e. IPQOS)

Buffering - store data in memory while transferring between devices

To cope with device speed mismatch

To cope with device transfer size mismatch

To maintain “copy semantics”

Double buffering – two copies of the data

 Kernel and user

 Varying sizes

 Full / being processed and not-full / being used

 Copy-on-write can be used for efficiency in some cases

12.27 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Device-status Table

12.28 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Sun Enterprise 6000 Device-Transfer Rates

12.29 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Kernel I/O Subsystem

Caching - faster device holding copy of data

Always just a copy

Key to performance

Sometimes combined with buffering

Spooling - hold output for a device

If device can serve only one request at a time

i.e., Printing

Device reservation - provides exclusive access to a device

System calls for allocation and de-allocation

Watch out for deadlock

12.30 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Error Handling

OS can recover from disk read, device unavailable, transient

write failures

Retry a read or write, for example

Some systems more advanced – Solaris FMA, AIX

 Track error frequencies, stop using device with

increasing frequency of retry-able errors

Most return an error number or code when I/O request fails

System error logs hold problem reports

12.31 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

I/O Protection

User process may accidentally or purposefully attempt to

disrupt normal operation via illegal I/O instructions

All I/O instructions defined to be privileged

I/O must be performed via system calls

 Memory-mapped and I/O port memory locations must

be protected too

12.32 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Use of a System Call to Perform I/O

12.33 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Kernel Data Structures

Kernel keeps state info for I/O components, including open file

tables, network connections, character device state

Many, many complex data structures to track buffers, memory

allocation, “dirty” blocks

Some use object-oriented methods and message passing to

implement I/O

Windows uses message passing

 Message with I/O information passed from user mode

into kernel

 Message modified as it flows through to device driver

and back to process

 Pros / cons?

12.34 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

UNIX I/O Kernel Structure

12.35 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Power Management

Not strictly domain of I/O, but much is I/O related

Computers and devices use electricity, generate heat, frequently

require cooling

OSes can help manage and improve use

Cloud computing environments move virtual machines

between servers

 Can end up evacuating whole systems and shutting them

down

Mobile computing has power management as first class OS

aspect

12.36 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Power Management (Cont.)

For example, Android implements

Component-level power management

 Understands relationship between components

 Build device tree representing physical device topology

 System bus -> I/O subsystem -> {flash, USB storage}

 Device driver tracks state of device, whether in use

 Unused component – turn it off

 All devices in tree branch unused – turn off branch

Wake locks – like other locks but prevent sleep of device when lock

is held

Power collapse – put a device into very deep sleep

 Marginal power use

 Only awake enough to respond to external stimuli (button

press, incoming call)

12.37 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

I/O Requests to Hardware Operations

Consider reading a file from disk for a process:

Determine device holding file

Translate name to device representation

Physically read data from disk into buffer

Make data available to requesting process

Return control to process

12.38 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Life Cycle of An I/O Request

12.39 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

STREAMS

STREAM – a full-duplex communication channel between a

user-level process and a device in Unix System V and beyond

A STREAM consists of:

STREAM head interfaces with the user process

driver end interfaces with the device

zero or more STREAM modules between them

Each module contains a read queue and a write queue

Message passing is used to communicate between queues

Flow control option to indicate available or busy

Asynchronous internally, synchronous where user process

communicates with stream head

12.40 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

The STREAMS Structure

12.41 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Performance

I/O a major factor in system performance:

Demands CPU to execute device driver, kernel I/O

code

Context switches due to interrupts

Data copying

Network traffic especially stressful

12.42 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Intercomputer Communications

12.43 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Improving Performance

Reduce number of context switches

Reduce data copying

Reduce interrupts by using large transfers, smart controllers,

polling

Use DMA

Use smarter hardware devices

Balance CPU, memory, bus, and I/O performance for highest

throughput

Move user-mode processes / daemons to kernel threads

12.44 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Device-Functionality Progression

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

End of Chapter 12

